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A generalization of the modified Solomon-Bloembergen—Mor-
gan (MSBM) equations has been derived in order to describe
paramagnetic relaxation enhancement (PRE) of paramagnetic
complexes characterized by both a transient (A7) and a static
(AZ™) zero-field splitting (ZFS) interaction. The new theory in-
cludes the effects of static ZFS, hyperfine coupling, and angular
dependence and is presented for the case of electron spin quantum
number S = 3, for example, Mn(l11) and Fe(l11) complexes. The
model gives the difference from MSBM theory in terms of a
correction term & which is given in closed analytical form. The
theory may be important in analyzing the PRE of proton spin—
lattice relaxation dispersion measurements (NMRD profiles) of
low-symmetry aqua—metal complexes which are likely to be
formed upon transition metal ions associated with charged molec-
ular surfaces of biomacromolecules. The theory has been imple-
mented with a computer program which calculates solvent water
proton T, NMRD profiles using both MSBM and the new
theory. © 1999 Academic Press

Key Words: paramagnetic relaxation enhancement; NMR dis-
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1. INTRODUCTION

relaxation divided by the concentration of paramagnetic ions
the relaxivityR, = 1/(mT,;), measured in units of (MMS).
The relaxation enhancement is given iy %)

1 Pq
T Tant 7’ 1]

p 1M M
wherert, is the chemical exchange timeg,s the number of
water in the first hydration sphere of each metal ion, Bnd
is the concentration of ions divided by the concentration o
water

m m

P =1H,0] ~ 55.5x 10° [2]

(with concentrations in mM).

When confined to nuclear spin—electron spin dipole-
dipole coupling, the proton nuclear spin—lattice relaxatior
rate of water protons in the first hydration shell around the
paramagnetic ion is given by a relatively simple expressiol

H —1y.
In proton T, nuclear magnetic resonance dispersion (NMR[ﬁn s)

experiments X) solvent water proton spin—lattice relaxation

times,T,, are measured almost continuously over a large range 1 4 ( Mo) zhz
of static magnetic field strengths ranging from typically 0.001 Tw 3 \4m

to 0.3 T (proton Larmor frequencies of 0.01-100 MHz). When

these data are complemented with measurements at a couple,pf physical constants have their usual meaniSgs) S is
field strengths of superconducting magnets the NMRD profife ejectron spin quantum number of the paramagnetic met
probes both the ESR and the NMR time scales. Thus, by analyzs e effective dipole—dipole correlation timg of Eq. [3]

ing solvent waterH T, NMRD profiles one may obtain micro- s yefined as a weighted sum of spectral density functihs
scopic information on the electron spin subsystem, coording-_ +1, 0. Each spectral density function comprises effect:

tion numberg, intermolecular electron—nuclear spin distanceg,m poth molecular reorientation and electron spin relaxatio
(ris), and the overall reorientation correlation tims)( The processesZ, 6-11:

modified Solomon-Bloembergen—Morgan (MSBM) thed?y (
successfully describes paramagnetically enhanced solvent wa-
ter proton spin—lattice relaxation (PRE) ratessgimmetrical
complexes3). This is usually expressed as the enhancement of
s.” is the Fourier—Laplace transform of the isotropic reorientatior
diffusion correlation function (of the paramagnetic complex) anc

2 ZS(S+1) DD

YivYs [ 6 Te - [3]
1S

7P = Re(0.1 X sPP + 0.3 X s§P + 0.6 X s°7}.  [4]
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TABLE 1
Parameters for MSBM and Generalized MSBM

Theory Te Tr Is As AT AZFS B q Validity range
MSBM Y Y Y No Y No No 6 High field
Ref. 9) Y*® Y Y Y Y Y No g==6 High field
This work Y Y Y Y Y Y Y g==6 High field

# The electron spin relaxation description is approximate.

the electron spin correlation function,s{téfe‘LS*ASiﬁ;}, at the the paramagnetic metal io3,(12). In Table 1 we have sum-

nuclear Larmor frequency,: marized the parameter space of SBM, the theoretical approa
of Bertini et al. (8,9, and compared it with the parameter
3 = space of the generalized theory of this work.
s = S(S-i-l)f trg{Stle'- “Stp e et mrdr In Refs. @,9 the effect of zero-field splitting in slow
0 tumbling systems is discussed using a slightly different ap

proach. It is also a high-field theory which is thought to be
approximately valid in the low-field regime. However, the
main difference between our theory and their theory is that w
Here LS is the Liouville superoperator governmg the electrotreat the electron spin relaxation exact in the Redfield limif
spin correlation function. The definition dfs and how to Wwhereas Bertiniet al. ignore the angle dependence of the
determine the spectral density in terms of an inverted mbrix electron spin relaxation matrix and the effect of nonextrem
is presented in detail in Appendixes A—C. We then follow thearrowing conditions. Second, we are able to derive the co
same approach as il1-14, however, now generalized torections to SBM due to nonextreme narrowing, static ZF¢
low-symmetry complexes. The need for a generalized SBivteraction, and hyperfine splitting in a consistent and compax
theory valid for biological systems was first recognized bfprm.
Dwek (3) and the first attempt to consider the effect of a static As is shown in Table 1 three extra parameters are intro
zero-field splitting interaction was made by Bertatial. (8). duced. First the hyperfine splittindA(s) is included, which is
The spectral density of Eq. [5] in the MSBM theory is  important in analyzing Mfi complexes. Second, we introduce
the static ZFS interactiom\¢">), which reflects an average low
% coordinate symmetry, i.e., lower symmetry than the octahedr:
SDDMSEM — f g "WTens olostiotlimg [6] coordination of a hexa aqua complex. Such an average distc
0 tion of the coordination shell may be indicated in an MSBM
analysis by a small coordination numbey € 6). However,
where well-defined electron spin relaxation timieg andT,s then one assumes that lowering the coordination symmet
are assumed (extreme narrowing condition for the electron sgies not influence the electron spin relaxation rates and tt
subsystem). The electron spin relaxation rates are descrilgggracted intermolecular electron—nuclear spin distancen
using Bloch—-Wangsness—Redfield theat$)(and obtained in the context of our generalized theory we are able to investigal
terms of the transient zero-field splitting interactiaf™®, and the validity of these assumptions. However, we assume slo
its characteristic correlation time,. T,s andT,s of Eq. [6] are tumbling complexes so that the static ZFS interaction influ:

=M,,. (5]

given by ences only the electron spin energy levels and not the electrc
spin relaxation rates through a reorientation-modulated ZF
1 1 1 4 time correlation function, as seen from Egs. [7] and [8]. We

T 51a ( 1+ ol 1T 4wSTc) [7] can then use the Redfield theory, which is valid whéfr, <

1 andAZ®r; > 1, implying the static limit of the electron spin
1 11 (3 S 2 ) g System.If the complexes are small and the reorientation ver
T,s 57¢02 1+ wir? 1y 4wir?) (8] fast, so thatAZ*r; < 1, there is a rotationally modulated
contribution to Egs. [7] and [8] which is readily included in the
In Egs. [7] and [8] we use instead of the strength constant theneralized SBM equation&3). In the case whedZ™r, ~ 1
electron spin relaxation rate in extreme narrowing.d/= this contribution has to be analyzed with the slow motion
((AF®)?/5)[4S(S + 1) — 3]7.. Notice that the SBM theory theory {7, 1J).

has no parameter reflecting a low-symmetry coordination of The third new parameter is the ang, between the
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laboratory and molecular frames of reference. The electronWe now focus on the importance of the correction term
relaxation is sensitive to this angle, as shown in the appendixes.

When the reorientation of the complex is slow compared to the A= RE[0.1 X sPPMSBYS 4 .3
electron spin relaxation time, as we assume in this work, the s '
angle is constant on the time scale of the ESR experiment. In X sEPMSBMS 4+ 0.6 X sPYMSBMS_ 1, [12]

other words, the electron spin will relax so fast that the angle

B will not change during the relaxation and we can treat it §ghich is calculated for a number of different situations corre-
a constant in this respect. If the sample is macroscoplcagxondmg to different biochemical systems.
oriented, all molecules have the same orientation and only one

angleB,, describes the system. Otherwise we have a distribu-
tion of angles and an averaging over angles should be per-
formed. If the distribution is isotropic we have a normal

powder sample, but arbitrary distributions can be treated W'LthThe correct|on. terms denyed n Append|xes A-C are giver
in terms of Redfield relaxation matrix elements. The spectre

the theory. If the reorientation is fast, the reorientation corrge, < o . . o
: . . ._density containing electron spin—lattice relaxation is angle de
lation function must be taken into account, and then there is NG .
pendent and written as
angle dependence.
We derive a generalization of Eq. [3] by introducing correc-
tion terms to the three spectral densities of the MSBM theory So°(Bum) = Soo "M (BLw) (1 + 8o(Buwm)), [13]
(cf. Eq. [4]). The simple form of MSBM equations is then
preserved and the added correlation terms are derived in clogfbre the correction term is given by
analytical form. The generalized theory then has the form

2. THEORY AND NUMERICAL CALCULATIONS

BrZ

6 = ! ! ’ ’ ’ AN

1_4(/J“0)2h2228(8+1) O(BLM) CA_BZ_DZ(A/E)
Tw 3 \am) PYYSTE

[14]

rs
where the matrix elemeni&s’, B’, etc., are given in Appendix
X Re{0.1|d3o(Bum)[*M 11 C. They are angle dependent through the model spectral de
0.3d%,(Buy)| M3 sities of Eq. [36] given in Appendix B. The corresponding
TUIFOLELM 00 expression including electron spin—spin relaxation depends ¢
+0.6/d2,(Bun)|2M L}, 9] the angleB,y, between th& axes of the laboratory frameZ(_)_
and the molecular-fixed frameZ(;). These spectral densities
are given by
where the MSBM spectral densities are replaced by the full
solution of the spectral density of Eq. [5] ant.(B.) are S2(Buy) = sEOMSEM(1 + 5. (Biw)) [15]
reduced Wigner rotation matrix element2). The deviation
from the MSBM theory is accommodated by correction terms
(8,), obtained from the inversion of the mattik (cf. Eq. [5]).
The matrix elements d¥l * are given a,} = sP*"*(1 + ]
8,), which are derived in detail in Appendixes A—C3j. xjﬁ trL{"Sli’rleili (burdl sTedg-iondr  [16]
0

s22(Buww) = SS+ 1)

The effective dipole—dipole correlation tim&® of Eq. [4]
now becomes

where S, is a standard electron spin vector operator of the
720 = Re{0.1 X sPPMSEM(1 + §.) + 0.3 x sfPMSEM laboratory-fixed frame (L), and

X (1+ 8y) + 0.6x sP2MSBM(1 + § )}  [10] G27 — ¥ — 2EJHL

8il(BLM) = CX — GZZ +VY ’

[17]

and the relation between Eg. [3] and Eg. [9] may be written
where the matrix elemen#ts, B, etc., are given in Appendix B
andX, Y, andZ are defined in Egs. [41]-[43].
i _ 1 T A [11] In the general case, when one perform a powder average, t
T T sum correction termA,.(»,) becomes
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FIG. 1. ProtonT, NMRD proflles for three different static ZFS interac-

o,/ MHz

tions AZFS, In (A) AF®=0.01cm?, in(B)AZ® =

= 0.1 cm*. Other parameters aztefps = 0.025 cm
rs=2.8 A, v = 10 ns,mz = 100 ns, and the hyperfine coupling constant
= 0.0074817 cm. The corresponding MSBM NMRD profile is also shown.

Asum(wl) = E

It should be noted that all the different ternds, A, etc.,
depend omB,,, andws (which in turn depends om,) through

f P(Bim)
m Jg

Br

0.025 cm*, and in (C)AZ™
', 7o =10.0 psq = 2,

2

1GZ-Y-

+ 0.7

D'%(A'/E")

2FJHL

X sin(Bw)dBiu-

C CX-G2Z+Y

the spectral densities given in Appendix B.
1/TH™(w,) of Eq. [11] becomes

aim to illustrate the magnitude of the correction term for a
couple of cases.

2.1. Mn Proteins

In the literature there are numerous articles using the MSBN
theory in order to characterize binding sites of hydrated tran
sition metal ions withg < 6 binding to biomolecules3( 16—
20). In these cases a coordination of lower symmetry is ex
pected, which is however only considered by the hydratiol
numberq (q < 6). In our new theory, as well as in ReB)(

a reinterpretation of the NMRD profiles also gives information
about coordination symmetry in terms of a static ZFS interac
tion.

In Fig. 1 threeT, NMRD profiles are displayed for theoret-
ical Mn** cases and compared with the MSB profile. The
hyperfine interaction strength constant was setAty =
0.0074817 cm', and the static ZFS interaction is varied from
0.01 (A) and 0.025 (B) to 0.1 (C) cm In Fig. 2 the same
parameters are used except for the hyperfine interaction whi
we have omitted. Compared to the SBM NMRD profile (dotted
line) the effect of the static ZFS interaction is to lower the
relaxation enhancement at low fields. The other model paran
eters areA\”™ = 0.025 cm*, 7. = 10.0 ps,q = 2, andr s =
2.8 A

In Fig. 3 we display the effect of anisotropic motions.
Instead of one correlation time = 10 ps, we use, = 10 ps
and afaster motioar, = 3 ps. In (A)AZ'ES 0,in (B)AX* =
0.025 cm*, and in (C)AZ™® = 0.1 cm . The effect of aniso-
tropic dynamlcs may be clearly seen in the “dip” region at
Larmor frequencies of 1-10 MHz. All other parameters have
the same values as in Fig. 2.

In Fig. 4 the relative correction term g,./(Ty**")* is
displayed for the cases displayed in Fig. 2. It is clearly show!
that the correction term,,, grows in importance as the proton

1

1 - 0.3 150
TMSBM( ) E f P(BLM)[AI(wI, ml; BLM) -
my 0 IV)
0.7 5 100
+ ~—————— |[sin dBim, =
C(wlv m|l BLM) :| (BLM) BLM 3‘
[19] 2
%5 50 |
where P(B.v) is a distribution function of the angl@,, (4
describing the orientation of the macromolecule relative to the
laboratory frame. If the sample is macroscopically well ori-

ented, the distribution function is a delta function and the
integral is eliminated. The relaxivity will in this case depend on
the angleB,y, as shown below. When the hyperfine splitting is
zero (Ais = 0) then the sum ovem, is absent.

0.1 1 10 100
o,/ MHz

FIG. 2. The same cases as in Fig. 1 are shown, but without hyperfine

We now turn to a number of numerical calculations whickoupling,As = 0.
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FIG. 3. The effect of an anisotropic motion on the NMRD profile is F|G. 5. The protonT, NMRD profile of Fig. 2B AZ° = 0.025 cnt?) is
Shq‘i\’”- Heres, = ZlF(S) ps andm = 3 ps. In (A)AF® = 0,in (B) AL = 0.025  calculated using the high-field version of the theory; i.e., only the electror
cm Y, and in (C)As™ = 0.1 cm . All other parameters are as in Fig. 2. spin-lattice spectral densit is considered (Eq. [20]).

Larmor frequency gets smaller starting frea8 MHz. It first 4 [ o) 2 S(S+ 1)
grows to about+10-13% and then at lower frequencies the =3 (40) fityyi ——%— Re(0.3X Mog}.  [20]
presence of a static ZFS interaction makes the correction term ™ m Fis

as large as=—40% depending on the magnitude of the static . . . .
ZES interactionAZ® There is also a correction due to 6{-|ere the spectral densities containing electron spin—spin rela
nid

nonextreme narrowing condition or nonexponential electrgfioN processes have been excluded because of non exire
spin relaxation at about 30—100 MHz, with a maximum valu@2rrowing conditions. This NMRD profile shows no effects of
of about 9%. With hyperfine interaction present the correctid@W-Symmetry coordination since only the electron spin—lattice
term at low field is even larger. It should be noted that tHg!@xation process is active. _ _ _
correction term presented is calculated as a correctiohyjo . ProtonT. NMRD profiles are more informative than high-
For fast chemical exchange,, is very small, and the samefield measurements since they are very sensitive to the pre

relative corrections will also apply ;, (the measured relax- €Nce of a static ZFS interaction and consequently to low
ivity). symmetry coordination. This information is not present in the

In Fig. 5 the NMRD profile Fig. 2B is displayed togethef!ign-field region &, > 10 MHz) where low-symmetry coor-
with that obtained using the high-field version of Eq. [9] dination influences mainly the coordination numlzger The
correction term, however, becomes extremely important an

actually dominates the relaxivity at lower fields.
0.2 When '*H NMRD profiles are interpreted using the SBM

theory, the coordination number is difficult to extract in
= 01 accordance with high-field data. This difficulty also influences
5 _ the extracted distances between the water proton and the
":" 0.0 ] paramagnetic electron spins since it comes as a scaling of t
5 magnitude of the relaxivityg/rs. This type of difficulty has
< 041 been discussed in the controversial interpretation of high-fiel
g data and water proton NMRD data of Mn(ll)-carboxy pepti-
o 02 dase A and concanavalin Al§, 18—20. Either one relies
% solely on high-field data as in Navod8) or one tries to use
E 0.3 high-field SBM theory analyzing the entire NMRD profile as in
04 Koenig and Brown Z0). Koenig and Brown write “. . we can
) 0:1 1 1'0 160 readily argue that the resulting fits to the proton data are not
o/ MHz too bad, and can ascribe deviations to the intrinsic complexi
|

ties of the theory, realizing that zero-field splittings have no

FIG. 4. The relative correction terma .../(TY**)* are shown for the D€€N properly considerédp. 433 in Ref. @0)). So, here we
cases displayed in Fig. 2. will briefly discuss the latter approach, however, in the contex
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160 displays a good fit in the whole region of high fields pd],
MHz. With these NMRD profiles we want to indicate the
fitting philosophy starting with the generalized SBM theory
with A%™ = 0.0 and consider only high-field data, and then adc
the static ZFS interaction to the model when data betely
MHz are considered. An ESR lineshape analysis when possib
would be helpful in finding reasonable values fgrand .

The parameters of Koeni@@) and our NMRD profiles are
summarized in Table 2. A problem similar to the one we
discussed here may also be encountered in interpreting wat
proton T; NMRD profiles of Mn(ll)-aqua complexes at low
temperature and in high-viscosity solutions.

120

Relaxivity / mM's™
[=+]
o

Y
o

0.1 1 10 100
o,/ MHz 2.2. Angular Dependence

FIG. 6. The paramagnetic contribution of bound Mnto the solvent In ordinary MSMB theory, the paramagnetic ion is assumec
protonT,; NMRD profiles in a solution of Mi*—Con A. The diamonds are the to be in an isotropic liquid, so that all angular dependence i
experimental values found in Re2Q). The theoretical NMRD profiles are averaged out by fast iSOtI’OpiC motions. In this generalize(
obtained using the best fit parameters of R2g) {/arying onlyr. andry. The
following parameters are used: (&) — 10 ps andr, — 170 ns, (B)r. — 20 theory, the angles,,, between the Iaboratory reference frgme
ps andr, = 190 ns, (C)r. = 40 ps andr, = 190 ns, and (DY, = 59 ps and and the moIecuIar.r.eference frame appears in the expression 1
mw = 205 ns. All parameters are listed in Table 2. the spectral densities, Eq. [36], through the reduced Wigne

rotation matrix elements?,(B.v) (12). As can be seen from

of a generalized SBM theory. We then think that the ZF5d: [9], the electrom, contribu_tion to the relaxivity includes
interaction is now properly considered to about 1 MHz protd®ly ad:(B.u) element, which is equal to zero whgp, = 0°
frequency. or 90°. This means that th€, part of the relaxivity can be
In Fig. 6D we display the best fit and the eXperimenté]liminatedin a macroscopically oriented sample by changing
values (diamonds) of Koenig and Brow®0j of paramagnetic the angle to one of these values. Tfig part cannot be
relaxivities of solvent protons in solutions of Kfr-Con A. In  €liminated in this way, since it includes bott,(B.u) and
trying to fit the high-field SMB theory to the entire NMRDUe(Buu) elements, and there is no angle that will simulta-
profile, the electron spin relaxation rates seem to be overe§{gOusly make these two elements zero.
mated. This means that = 59 ps is too long keepings, _ This effect is shown in Fig. 8A5™ = 0.025 cm’, A =
constant. If we shorten, as is displayed in Figs. 6A-6C t00-025 cm’, 7. = 10.0 psg = 1, andrs = 2.8 Ain all cases.
about 10 ps the theoretical NMRD profile is improved at proton
frequenciesw, < 10 MHz. At high fields the NMRD profile

conforms very well with the experimental values but at low 120
fields the fit is very bad. However, one should remember that
part of this low-field region is outside the validity range of the 100 4
high-field SMB theory. MA'—Con A is expected to be a ::w 80
low-symmetric complex since one expect a coordination num- & ]
ber ofq = 2. E 60
In Fig. 7 we also compare the experimental NMRD profile *E‘
of Koenig and Brown Z0) with three theoretical NMRD pro- % 49
files where the correlation time, of the transient ZFS inter- E
action and the exchange timg have been changed from the 20
best fit values of Ref.20). We user, = 30 ps which is
considerably shorter than their best fit valuerof 59 ps. This 0 - , . , .
theoretical NMRD profile also conforms quite well to the 0.1 1 10 100
experimental data at high fields, indicating correlation times o | MHz

more like a perturbed hydration shell. Figures 7A-7C display

the effect of a static ZFS interaction, lowering the relaxivity at F'G- 7. The effect of static ZFS interaction for the paramagnetic contri-
frequencies below 5 MHz. The effect of a static ZES interabytlon of bound MR to the solvent protoit; NMRD profiles in a solution of
aq : fin_Con A. The parameters are as in Fig. 6 exceptrfor= 8 ns, 7. = 30

tion clearly removes the large discrepancy at low fields. Figugg, andr, = 180 ns, and the static ZFS interaction. In (AF™® = 0, in (B)
7C is an NMRD curve with a static ZF8$5™° = 0.1 cm* and AZS = 0.05 cni?, and in (C)AZS = 0.1 cmi™.
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TABLE 2
Comparison of SBM Best Fit (20) and the Generalized SBM Theory
Figure Tr/NS rs/A /NS 7/ps As/MHz AFSem™ AZ¥em™ q T/K
6A 14 2.8 170 10 — 0.0135 — 2 —
6B 14 2.8 190 20 — 0.0135 — 2 —
6C 14 2.8 190 40 — 0.0135 — 2 —
6D (20) 14 2.8 205 59 — 0.0135 — 2 298
7A 8 2.8 180 30 — 0.0135 0.000 2 —
7B 8 2.8 180 30 — 0.0135 0.025 2 —
7C 8 2.8 180 30 — 0.0135 0.100 2 —

In Fig. 8A, the isotropic case is shown, in (B) the angle is 90&, > ~1 MHz. In our figures, we have extended the plots into

and in (C) the angle is 30° low fields, thus slightly outside the validity range of the theory.
The expressions for the paramagnetically enhanced nucle
3. SUMMARY spin—lattice relaxation rate is derived in a closed analytica

form. However, in order to obtain the enhanced nuclear spin
In this work we give a generalized SBM theory f8r= 3 |attice relaxation rate for an isotropic solution one must per
which is valid for Iow-symmetry coordination of water m0|e-form an average oved,y, ang|es_ The theory provides an extra
cules around a paramagnetic metal ion binding to a biomacgarameterAZ™ which may reflect changes in the average
molecule. It is assumed that the reorientational motion is t@ymmetry of the first hydration shell of the paramagnetic ion:
slow to be important for the relaxation of the electron spigpon binding to biomacromolecules. NMRD profiles for mac-
system. The electron spin relaxation then becomes angle gigscopically oriented samples are also investigated where it
pendent which has been accounted for in the theory. The thegRswn that electron spin-lattice relaxation enhancement me
derived is valid for nonextreme narrowing conditions for thBe removed for a macroscopically well-oriented sample witt
electron spin system with a static ZFS interaction present.tife director at 0° and 90° relative to the static magnetic field
should be noted that, like the SBM theory, this is not a A computer program in which the closed analytical expres
low-field theory. We assume that the Zeeman interaction dogjons are implemented to give the first MSBM-like theory of
inates over the ZFS and hyperfine interactions. Therefore, gfi®tonT, NMRD profiles, which is valid for both nonextreme
should be careful when the theory is used at low fields=0  narrowing conditions for the electron spin system and low:
MHz). For example, with a ZFS strengtf™ = 0.05cm™, the  symmetry coordination, has been developed. The relaxivit
theory is strictly valid only for field strengtt8, > 0.02 T, or from the scalar interaction is also included in the compute

program.
Computer program. A Fortran computer program devel-
200 | oped according to the theory presented in this work is availabl
upon request by e-mail to Perolof.Westlund@chem.umu.se.
2 450
F‘E ] APPENDIX A
£ A
£ 100 :N The Lattice Dynamics
E ] = Consider the spectral density of Eq. [5]
2 50 3
DD(; —
Sa’ (lei BLM) S(S+ 1)
0 k ! T T ! =) ~
0.1 1 10 100 XJ trs{"stereiL s(ﬁLM)T‘Stlrﬁg}e—(iw.+1/TR)TdT
o,/ MHz 0
FIG. 8. The protonT, NMRD profile is calculated for macroscopically =M1 [21]

oriented samples. The isotropic (not oriented) NMRD profile is shown in (A).
The angleB, is in (B) 90° and in (C) 30°. All other parameters are the same ] ) _
as those for Fig. 2B. First, we must define the propagator or the Liouville superop
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erator governing the time dependence of the electron spin (F_,(t)2®) = [Fo(t) 2PXDoo(Qpu(t))) + Fu(t)2®
correlation function. Lowering the coordination symmetry and D.(Q F 2P)
decreasing the ZFS correlation time increase the electron spin X Doz Qen(1)) + F(1)

relaxation and may also lower the PRE effect. Taking this into X (Do o(Qpm())NID2,(Qp)- [27]
account in formulating the Hamiltonian model, the electron
spin Liouvillian Ls(B.y) is given by Rhombicity of the ZFS tensor is included in an effective ZFS

parameteAZ™ = V2D DY + 2ES™. Here SV is an order
parameter given b, = (d5.(Brv)) and measures the flex-
ibility of the complex. The order paramet&f" introduces a
4L 2FS 1R _ 29 partially average_d Z_FS which t.hus measures an averaged lo\
o (Buw) zr Buw) [22] symmetry coordination of the first hydration shell of the metal

A ion.

Ls(B.w) governs the time dependence of the electron spinThe secular approximation means that only the term corr
correlation functions and contains a Zeeman term, a hyperfimgiting with the Zeeman interaction is considered. This is :
interaction term, a static secular ZFS term, and a Redfigjdod approximation since the other nonsecular terms only wi
superoperatoR,cs. The latter is generated by the transient padontribute at higher order:
of the ZFS interaction, since we are focusing on slowly tum-
bling complexes of eIectrc_)n spin systems m@kw: % Let us AZFS(BLm) = AZFSd2,(Buw) SE. [28]
focus on Eq. [22] and first consider the time-independent

Liouville operators. _ , In Eq. [28] the orientational dependence of the molecular
_ There are three time-independent interactions: the Zeemga,j frame (M) of a macromolecule or a molecular interface s
Interaction given bydZ,(B.») which is a reduced Wigner rotation matrix
A R R element 12). We assume for simplicity that the molecular
HE*em "= —ydB,Ss = wsSL, [23] frame (M) of the partially averaged ZFS interaction coincides
with ther s vector of the dipole—dipole interaction. In practice,
the hyperfine interaction with the metal nucleus with spitt is not possible to distinguisB, E, andS;" in the calcula-
quantum number tions. The effect of noncoinciding dipole—dipole and static
ZFS tensor frames also introduces a reduction in the NMRI
F yperine — A &17 1 [24] profiles_. This effect hgs been analy;ed by Benetis and Kow
alewski @1). It is straightforward to include the extra trans-
formation matrix which thus will scale the paramagnetically
enhanced relaxation contribution. But without knowing more
R ~ about the structure of the hydration shell and the binding site ¢
HE™ = > (—1)"SKF_()2Y). [25]  the paramagnetic metal ion we think that such an analysis mu
n come at a later stage. The orientational dependence of tt
. molecular-fixed frame (M) of a macromolecule or a moleculal
Here,S; is a standard second-rank electron spin operator ainderface is given byd2(B.4), which is a reduced Wigner
(F_a(t)*") is a static ZFS tensor component of the laboratorptation matrix elementi).
frame. We may write the laboratory tensor components in The time-dependent ZFS interaction arises because of flu
terms of the ZFS principal components by introducing amating symmetry of the first coordination shell of the para-
intermediate frame (M) defining the molecular surface whergagnetic metal ion, that is, the fluctuating symmetry of the

ES(BLM) = Egeeman_,_ Egyperfine

and finally the static ZFS interaction

the hydrated metal ion is “bound™: hydration shell with an averaged symmetry lower than octahe
dral or tetrahedral symmetry. This lowering of symmetry may

(F_p(0) 2Dy = > [Fo(t) 2PXDyo( Qpy(t))) + Fy(t) 2P arise because some ligand water molecules are immobilized

K have been replaced by molecular groups originating from

2F) molecular interface or from the macromolecule to which the

X (Dia(Qen(1))) + F (1) metal ion is bound. The molecular fluctuation of the first
X (Dy—o(Qpm()))ID Q). [26] coordination sphere then generates a transient ZFS with ze
mean average value. This is modeled by an electron spin ZF

Now we assume threefold symmetry or more around the m'd?m"ton'a”'

lecular-fixed directorz,, and thenk = 0 which considerably . . .
simplifies the static ZFS Hamiltonian: AHT(, Buw) = HZ(t) — HE™(Bw). [29]
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TABLE 3 the inverse ofM which is determined by the superoperator
H — 5 [
Matrix Elements of M,(B.u, m,) for S =3 M(w1, Buu)
A =i(o = ws(m)) + Rﬁ(BLM; m;)
C - o = i + R Mion B = -ILdBu) +iod. (31
D = i(w = ws(m)) + Rff(BLMv m,) R
E = i(o = wg(M)) + RE(Bu, M) where 1is the unity superoperator.
F = Ri(Bw, M) Here we have omitted the; term, as the biomacromol-
G = i14V2DSeud5o( Buw) ecule—paramagnetic ion complex is assumed to reorient vel
H = i6V5D Soudbo(Bun) slowly. A
I = iIVED Sondio( Buv) The electron spin operator representation choseﬂ\?lf(on.,
J = i2V3D Seydio(Bi) B.w) is an irreducible spherical electron spin tensor operato
K = Rii(Bu, M) basis seD>

L = R¥E(Bu, M)

. S S X
0i=> \/22+1( Mt o —m _U)

Now, applying ordinary Bloch—-Wangsness—Redfield theory "
(15), the transient ZFS interaction generates an angle-depen- X (=1)5 ™7 Sm+ o){(Sm [32]
dent relaxation supermatriR. The relaxation matrix elements
are listed in Table 3. In o_rder to dgter_ming the paramagneég—(pressed in terms of Zeeman eigenopera®r + o)(Sn
cally enhanced nuclear spin relaxation in mlcro—heterogene% where
systems, the angle-dependent spectral denditjés,, Buu),
involving both types of electron spin relaxation processes (Egs.
[51-[7]), have to be determined. However, a theoretical sim- ( S S > ) [33]
plification may be introduced since it is the spectral densities m+o —-m -—o
and not the time autocorrelation functions which are the crucial
objects to be determined. Therefore, by formally solving thie a 3 symbol (2).
Fourier—Laplace transforms it is possible to derive closed an-For an electron spin quantum numb&r= 3 in micro-
alytical expressions. This procedure is analogous to derivihgterogeneous systems all the statistical tensors ofXanl0,
NMR/ESR lineshape functions for high-spin systems. We thdn 2, 3, 4, 5 enter the theoretical description. The maitixs
readily obtain closed analytical expressions for the spectthen set up by adding the Redfield electron spin relaxatio
densities for arbitrary nuclear spin quantum numbenmsatrix in the irreducible spherical tensor spin operator repre
(13, 14, 22. sentation to the static Liouville supermatrix which includes the

The nuclear spin spectral densities of Eq. [5] and Eq. [E]ectron Zeeman interaction, the hyperfine interaction, and th
may then be determined using the approach of Refstatic ZFS interaction.
(13, 14, 22. The expression for each of the spectral densitiesAs mentioned above the theoretical approach means carr
(o = %1, 0) is given by one element of the inverse of thang out the Fourier—Laplace transform explicitly and thus solv-
matrix M (B.v). The spectral density may be writteh3( 14  ing the integral exactly, giving the result of the spectral densit)

in terms of only one matrix element &l * for each block

3 " . characterized by a hyperfine split ESR line. This is an approx
sP%(w,, Biw) = S(S+1)f tr {SLiet s Gl e imatiqn originating from taking only the scalar hyperfine cou-
0 pling into account (cf. Eq. [24]).
—iwT
X e ds APPENDIX B
= f tr {0 M@ lig, The Electron Spin-Spin Spectral Density
0

In the spherical tensor representation of Eq. [32] of electrol
_ At? 1A spin quantum numbe$® = 3 the spin—-spin relaxation corre-
trslO0x M(w,, Buw) 05}, [30] sponds too = +1. The M matrix is then denoted with an
. A index, M ,, indicating its dependence on electron spinpro-
where te{ OX'M(w,, B.v) "OL} denotes a matrix element of cesses¢ = *=1). TheM, matrix has the form
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TABLE 4 with the dynamic frequency shifp, defined by
Redfield Matrix Elements for S = 3
. . 32(A{F)? 5
RZ(Buy, M) = £(33J, + 38J, + 76, + 38iQ, — 5iQ,) Qn(Bm, Nwg(M)) = _TE [diéa(Buw) |2
Ri(Bu, M) = 25(39J, + 218, + 233J, + 22iQ, + 17iQ,) k
Rii(Buw, m) = 3(3J, + 53, + 23, + iQ, + 2iQ,) Tﬁnws(mO

RE(Bw, M) = £(123), + 3701, + 497], + 1261Q, — 3iQ,)
RE(Buw, M) = 5(3Jo + 26J; + 16J, — 6iQ; + 9iQ,)

R (B, m) = f_fz\/ﬁ(Jo + 23, — 33, + 2IQ, — iQy)
Rif(aw, m) = %V21(J, — J, + 2iQ; — iQ,)

RE(aw, m) = &V14(33, + 143, — 173, + 6iQ, — 3iQ,)

L+ (ogmmg? 7]

We thus allow for anisotropic diffusion dynamics of the transient
ZFS. Physically this anisotropy may be thought of as an effect c
liberation and the spinning motion of the water ligands and :
slower distortion motion are due to intercomplex M—O distance
fluctuations. This model has been denoted the pseudo-rotati
model (L1, 23. The correlation times, are defined as

A F G HDO
FB O I J 1 1
M, = My(w, Bwm)=| G 0 C K 0 |, [34] ?OZZ
H I K DL
0J 0L E o5, 1
Tiq N 61, 67
where the matrix elements are given in Table 3. It should be 1 1 2

noted that the matrix elements both in Eq. [34] and in Eq. [49] — [38]

! ., 37, 37’
all depend om3,,,. Elements on and next to the diagonal also T2 T i
depend onws andm,, and finally the diagonal elements depend

where the “fast” motion ) is expected to be in the range of

on w,. To simplify the notation this dependence it not epricitIy1_5 ps for hexa agua complexes and the “perpendicular” me

shown. In Egs. [34] and [49], the matrix elements are orderéd . - .
with even-rank elements first, with ranks in the order 2, 4, 1 ﬁon (7.) is much slower because it is more influenced by the

5. The rank 1 element = (M), corresponds to the Spinn"lolecular interface and may range from an isotropic (1-5 ps

vector and is the relevant element for spin relaxation. What wese to very anisotropic dyna-m|cs, €., 5_309 PS. .
The electron spectral densities are determined from an ir

now need to calculate is the 33 element of the inverse matrix. . : . ) .
) . . . version of the corresponding matrix. For the electron spin—spi
The electron spin energies are given by the Zeeman inters

. ) _ .
action and the hyperfine splitting as relaxation witho = 1 we obtain

iwg(m) = iwg-l- im, X A, [35] sP(w), Bim, M) = trs{C)FM 2w, Bum, ml)oi}, [39]

thus ignoring higher order terms. The Redfield relaxation mg/_here the exact solution of the spectral density of Eq. [39] is

trix elements of Table 3 are written in the representation of Eq. R . X — 2EJHL
[32] asR:* = trg{ OX 'R(Buw, m)OZ}. The elements can be trslO1'Mo (), B, MO = 5527 1y
calculated using Eq. [3] in Ref2R) and are listed in Table 4.

We have now reached the theoretical level where electron _ 1 ( i G?Z-Y- 2FJHL>
spin relaxation is expressed in terms of microscopic parameters C CX-G°Z+Y
describing the transient ZFS correlation function. Here also the 1
intrinsic angle dependence becomes evident since the electron == (1+ 6y(w), Bums M), [40]
spectral densities have this angle dependence. The model elec- c
tron spin spectral densities are given by where we have introduced
32(A7F9)2 X =AZ+ H%J?- BE) + 2EFHI + F%L2 - DE) [41
Jn(Bimy Nwg(m))) = (27;)2 |dE(Bum)| 2 ( : ) ( ) [
K Y = 2GK(BEH — EFI — HJ?)

+ K2(EF? — ABE+ AJ?) — 2FJL(CH — GK) [42]
Z=BDE - EI2 - DJ2 - BL2 + 2IJL. [43]

X T
1+ (Nnwg(m)Ty)?

(36]
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Note that these terms all depend ep B.v, andm,. We also TABLE 5
define a correction term Matrix Elements of M, for S = 3 and Redfield
Matrix Elements RZ>

G?Z - Y — 2FJHL

0,(w, ,m) = , 44 R&(Bw, M) = £(221;, + 27J,)
1( | BLM I) CX _ GZZ + Y [ ] Rgg(BLM, ml) _ 5_2(2631 N 23J2)
R3G(Bu, M) = V331 — o)
where we explicitly write the dependence&fon w,, By, and A = REBu, M) + i
m, to stress this fact. C' = RE(Bu, M) + i,

We obtain the spectral density independent of hyperfine E' = RE(Bu, M) + i)
splitting by a summation over hyperfine-dependent electron B’ = RE(Buw, M)
resonances D' = R(aww, M)

Roo(Bw, m) = J; + 4J,
~ 2 ~ 33 1
271, Bu) = 2 u{OFM un, B, MO [45] e
| RE(Bu, m) = 2VIAD, - 1)
In the case of extreme narrowing (= K = L = 0) one RE(Bu, m) = £V350; — J2)

may think that the SBM result (T) is recovered. However,

this is not the case, since the static ZFS mixes even-rank

electron spin tensor operators, and the following correcti@gyen-rank tensor operators are decoupled from the odd-ra
term is still present, tensor operators. T, (o = 0) matrix is block diagonal:

DD
st (@, Bm) M;=M(w, B, M)
1 GU 2 - 24
= E ( 1 + ) , [46] _ROO - |(,0| Roo 0 0 O
~C ACU - G?U + [J? — BE]JCH? R24 R —iw, 0O 0 O
= 0 0 A" B 0 |.[49]
where we have defined 0 0 B ¢ D
0 0 0O D' FE’

U =BDE - EI? - DJ2 [47]

In deriving Egs. [40] and [46] we obtain the first two of our_ |N€ matrix elements d¥, are expressed in terms of Red-
main results, clearly displaying the correction terms to tHi€!d matrix elements and the nuclear spin Larmor frequenc

MSBM theory. and are listed in Table 5, together with the Redfield matrix
elements.
APPENDIX C The inverted matrix elemeni;");; is given by
The Electron Spin-Lattice Spectral Density tr{ O3™M 1 Ny, B, M)OL

The spectral density which is dominated by electron spin—

1
=7 (1 + 8g(@), Buw, M), 50
lattice relaxation is given by A ol@i, Buwy M) [50]

where a correction termdy(w,, B, M) which is due to
nonextreme narrowing has been introduced. It is thus equal
zero in the extreme narrowing regime,

Se (w, Bw, M) = m

BI2

XJ trL{ASéTeil:s(BLM,m|)rAséﬁesq}efw|rdT
0 So(wy, Buw, M) = C'A-BZ-D2AJE)"

[51]
= trs{Cﬂ)é*l\Q/l oy, Buws ml)oé}' [48]

This is our third main result of this paper and now we have twc
In this case only a 3< 3 matrix has to be inverted since thespectral densities of the PRE theory in closed form.
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