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A generalization of the modified Solomon–Bloembergen–Mor-
an (MSBM) equations has been derived in order to describe
aramagnetic relaxation enhancement (PRE) of paramagnetic
omplexes characterized by both a transient (Dt

ZFS) and a static
Ds

ZFS) zero-field splitting (ZFS) interaction. The new theory in-
ludes the effects of static ZFS, hyperfine coupling, and angular
ependence and is presented for the case of electron spin quantum
umber S 5 5

2, for example, Mn(II) and Fe(III) complexes. The
odel gives the difference from MSBM theory in terms of a

orrection term d which is given in closed analytical form. The
heory may be important in analyzing the PRE of proton spin–
attice relaxation dispersion measurements (NMRD profiles) of
ow-symmetry aqua–metal complexes which are likely to be
ormed upon transition metal ions associated with charged molec-
lar surfaces of biomacromolecules. The theory has been imple-
ented with a computer program which calculates solvent water

roton T1 NMRD profiles using both MSBM and the new
heory. © 1999 Academic Press

Key Words: paramagnetic relaxation enhancement; NMR dis-
ersion; SBM theory; low symmetry; aqua–metal complexes.

1. INTRODUCTION

In protonT1 nuclear magnetic resonance dispersion (NM
xperiments (1) solvent water proton spin–lattice relaxat

imes,T1, are measured almost continuously over a large r
f static magnetic field strengths ranging from typically 0.

o 0.3 T (proton Larmor frequencies of 0.01–100 MHz). W
hese data are complemented with measurements at a cou
eld strengths of superconducting magnets the NMRD pr
robes both the ESR and the NMR time scales. Thus, by an

ng solvent water1H T1 NMRD profiles one may obtain micr
copic information on the electron spin subsystem, coord
ion numberq, intermolecular electron–nuclear spin distan
r IS), and the overall reorientation correlation time (tR). The
odified Solomon–Bloembergen–Morgan (MSBM) theory2)

uccessfully describes paramagnetically enhanced solven
er proton spin–lattice relaxation (PRE) rates ofsymmetrica
omplexes (3). This is usually expressed as the enhanceme

1 To whom correspondence should be addressed.
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elaxation divided by the concentration of paramagnetic i
he relaxivityR1 5 1/(mT1p), measured in units of (mMs)21.

The relaxation enhancement is given by (4, 5)

1

T1p
5

Pq

T1M 1 tM
, [1]

heretM is the chemical exchange time,q is the number o
ater in the first hydration sphere of each metal ion, anP

s the concentration of ions divided by the concentratio
ater

P 5
m

@H2O#
5

m

55.53 103 [2]

with concentrations in mM).
When confined to nuclear spin– electron spin dipo

ipole coupling, the proton nuclear spin–lattice relaxa
ate of water protons in the first hydration shell around
aramagnetic ion is given by a relatively simple expres
in s21):

1

T1M
5

4

3 S m0

4pD
2

\ 2g I
2g S

2
S~S1 1!

r IS
6 t c

DD. [3]

he physical constants have their usual meanings (3–8). S is
he electron spin quantum number of the paramagnetic m
on. The effective dipole–dipole correlation timetc

DD of Eq. [3]
s defined as a weighted sum of spectral density functionsss

DD,
5 61, 0. Each spectral density function comprises eff

rom both molecular reorientation and electron spin relaxa
rocesses (2, 6–11):

t c
DD 5 Re$0.1 3 s1

DD 1 0.3 3 s0
DD 1 0.6 3 s21

DD%. [4]

s
DD is the Fourier–Laplace transform of the isotropic reorienta
iffusion correlation function (of the paramagnetic complex)
1090-7807/99 $30.00
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334 STRANDBERG AND WESTLUND
he electron spin correlation function, trS{ Ŝs
1†eiL̂̂StŜs

1r̂S
T}, at the

uclear Larmor frequencyvI:

ss
DD 5

3

S~S1 1! E
0

`

trS$Ŝs
1†eiL̂

ˆ
StŜs

1r̂ S
T%e2~ivI11/tR!tdt

; M ss
21. [5]

ere L̂̂S is the Liouville superoperator governing the elect

pin correlation function. The definition ofL̂̂S and how to
etermine the spectral density in terms of an inverted matrM

s presented in detail in Appendixes A–C. We then follow
ame approach as in (11–14), however, now generalized
ow-symmetry complexes. The need for a generalized S
heory valid for biological systems was first recognized
wek (3) and the first attempt to consider the effect of a s
ero-field splitting interaction was made by Bertiniet al. (8).
The spectral density of Eq. [5] in the MSBM theory is

ss
DD,MSBM 5 E

0

`

e2t~1/Ts11,S2sivS1iv I11/tR!dt, [6]

here well-defined electron spin relaxation timesT1S andT2S

re assumed (extreme narrowing condition for the electron
ubsystem). The electron spin relaxation rates are desc
sing Bloch–Wangsness–Redfield theory (15) and obtained i

erms of the transient zero-field splitting interaction,D t
ZFS, and

ts characteristic correlation time,tc. T1S andT2S of Eq. [6] are
iven by

1

T1S
5

1

5tS0
S 1

1 1 v S
2t c

2 1
4

1 1 4v S
2t c

2D [7]

1

T2S
5

1

5tS0

1

2 S3 1
5

1 1 v S
2t c

2 1
2

1 1 4v S
2t c

2D . [8]

n Eqs. [7] and [8] we use instead of the strength constan
lectron spin relaxation rate in extreme narrowing 1/t 0S 5
(D t

ZFS) 2/5)[4S(S 1 1) 2 3]t c. Notice that the SBM theor
as no parameter reflecting a low-symmetry coordinatio

TAB
Parameters for MSBM

Theory tc tR r IS AIS

SBM Y Y Y No
ef. (9) Y a Y Y Y
his work Y Y Y Y

a The electron spin relaxation description is approximate.
e

M
y
c

in
ed

e

f

he paramagnetic metal ion (3, 11). In Table 1 we have sum
arized the parameter space of SBM, the theoretical app
f Bertini et al. (8, 9), and compared it with the parame
pace of the generalized theory of this work.
In Refs. (8, 9) the effect of zero-field splitting in slo

umbling systems is discussed using a slightly different
roach. It is also a high-field theory which is thought to
pproximately valid in the low-field regime. However,
ain difference between our theory and their theory is tha

reat the electron spin relaxation exact in the Redfield
hereas Bertiniet al. ignore the angle dependence of
lectron spin relaxation matrix and the effect of nonextr
arrowing conditions. Second, we are able to derive the
ections to SBM due to nonextreme narrowing, static
nteraction, and hyperfine splitting in a consistent and com
orm.

As is shown in Table 1 three extra parameters are i
uced. First the hyperfine splitting (AIS) is included, which is

mportant in analyzing Mn21 complexes. Second, we introdu
he static ZFS interaction (Ds

ZFS), which reflects an average lo
oordinate symmetry, i.e., lower symmetry than the octah
oordination of a hexa aqua complex. Such an average d
ion of the coordination shell may be indicated in an MS
nalysis by a small coordination number (q , 6). However

hen one assumes that lowering the coordination symm
oes not influence the electron spin relaxation rates an
xtracted intermolecular electron–nuclear spin distancer IS. In

he context of our generalized theory we are able to invest
he validity of these assumptions. However, we assume
umbling complexes so that the static ZFS interaction in
nces only the electron spin energy levels and not the ele
pin relaxation rates through a reorientation-modulated
ime correlation function, as seen from Eqs. [7] and [8].
an then use the Redfield theory, which is valid whenD t

ZFStv ,
andDs

ZFStR . 1, implying the static limit of the electron sp
ystem. If the complexes are small and the reorientation
ast, so thatDs

ZFStR ! 1, there is a rotationally modulat
ontribution to Eqs. [7] and [8] which is readily included in
eneralized SBM equations (13). In the case whenDs

ZFStR ' 1
his contribution has to be analyzed with the slow mo
heory (7, 11).

The third new parameter is the anglebLM between th

1
d Generalized MSBM

FS Ds
ZFS bLM q Validity range

No No 6 High field
Y No q # 6 High field
Y Y q # 6 High field
LE
an

D t
Z

Y
Y
Y
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335GENERALIZED MSBM THEORY OF LOW-SYMMETRY COMPLEXES
aboratory and molecular frames of reference. The elec
elaxation is sensitive to this angle, as shown in the append

hen the reorientation of the complex is slow compared to
lectron spin relaxation time, as we assume in this work
ngle is constant on the time scale of the ESR experime
ther words, the electron spin will relax so fast that the a
LM will not change during the relaxation and we can treat
constant in this respect. If the sample is macroscopi

riented, all molecules have the same orientation and onl
nglebLM describes the system. Otherwise we have a dist

ion of angles and an averaging over angles should be
ormed. If the distribution is isotropic we have a norm
owder sample, but arbitrary distributions can be treated

he theory. If the reorientation is fast, the reorientation co
ation function must be taken into account, and then there
ngle dependence.
We derive a generalization of Eq. [3] by introducing corr

ion terms to the three spectral densities of the MSBM th
cf. Eq. [4]). The simple form of MSBM equations is th
reserved and the added correlation terms are derived in c
nalytical form. The generalized theory then has the form

1

T1M
5

4

3 S m0

4pD
2

\ 2g I
2g S

2
S~S1 1!

r IS
6

3 Re$0.1ud00
2 ~bLM!u 2M 11

21

1 0.3ud01
2 ~bLM!u 2M 00

21

1 0.6ud02
2 ~bLM!u 2M 2121

21 }, [9]

here the MSBM spectral densities are replaced by the
olution of the spectral density of Eq. [5] andd0m

2 (b LM) are
educed Wigner rotation matrix elements (12). The deviation
rom the MSBM theory is accommodated by correction te
ds), obtained from the inversion of the matrixM (cf. Eq. [5]).
he matrix elements ofM 21 are given asMss

21 5 ss
DD,MSBM(1 1

s), which are derived in detail in Appendixes A–C (13).
The effective dipole–dipole correlation timetc

DD of Eq. [4]
ow becomes

t c
DD 5 Re$0.1 3 s1

DD,MSBM~1 1 d1! 1 0.3 3 s0
DD,MSBM

3 ~1 1 d0! 1 0.6 3 s21
DD,MSBM~1 1 d21!} [10]

nd the relation between Eq. [3] and Eq. [9] may be writt

1

T1M
5

1

T1M
MSBM 1 Dsum. [11]
n
s.
e
e
In
le
s
lly
ne
u-
r-

l
th
-
o

-
y

ed

ll

s

We now focus on the importance of the correction term

Dsum5 Re$0.1 3 s1
DD,MSBMd1 1 0.3

3 s0
DD,MSBMd0 1 0.6 3 s21

DD,MSBMd21}, [12]

hich is calculated for a number of different situations co
ponding to different biochemical systems.

2. THEORY AND NUMERICAL CALCULATIONS

The correction terms derived in Appendixes A–C are g
n terms of Redfield relaxation matrix elements. The spe
ensity containing electron spin–lattice relaxation is angle
endent and written as

s0
DD~bLM! 5 s0

DD,MSBM~bLM!~1 1 d0~bLM!!, [13]

here the correction term is given by

d0~bLM! 5
B9 2

C9A9 2 B9 2 2 D9 2~ A9/E9!
, [14]

here the matrix elementsA9, B9, etc., are given in Append
. They are angle dependent through the model spectra
ities of Eq. [36] given in Appendix B. The correspond
xpression including electron spin–spin relaxation depend

he anglebLM between theZ axes of the laboratory frame (ZL)
nd the molecular-fixed frame (ZM). These spectral densiti
re given by

s61
DD~bLM! 5 s61

DD,MSBM~1 1 d61~bLM!! [15]

s61
DD~bLM! 5

3

S~S1 1!

3E
0

`

trL$Ŝ61
1† eiL̂

ˆ
S~bLM!tŜ61

1 r̂ S
T,eq%e2ivItdt, [16]

here Ŝ61
1 is a standard electron spin vector operator of

aboratory-fixed frame (L), and

d61~bLM! 5
G2Z 2 Y 2 2FJHL

CX 2 G2Z 1 Y
, [17]

here the matrix elementsA, B, etc., are given in Appendix
ndX, Y, andZ are defined in Eqs. [41]–[43].
In the general case, when one perform a powder averag

orrection termDsum(v I) becomes
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336 STRANDBERG AND WESTLUND
Dsum~v I! 5 O
mI

E
0

p

P~bLM!

3 F0.3
B9 2

C9A9 2 B9 2 2 D9 2~ A9/E9!

1 0.7
1

C

G2Z 2 Y 2 2FJHL

CX 2 G2Z 1 Y G
3 sin~bLM!dbLM. [18]

t should be noted that all the different termsA9, A, etc.,
epend onbLM andvS (which in turn depends onmI) through

he spectral densities given in Appendix B.
1/T1M

MSBM(v I) of Eq. [11] becomes

1

T1M
MSBM~v I!

5 O
mI

E
0

p

P~bLM!F 0.3

A9~v I, mI, bLM!

1
0.7

C~v I, mI, bLM! Gsin~bLM!dbLM,

[19]

here P(b LM) is a distribution function of the anglebLM

escribing the orientation of the macromolecule relative to
aboratory frame. If the sample is macroscopically well
nted, the distribution function is a delta function and

ntegral is eliminated. The relaxivity will in this case depend
he anglebLM, as shown below. When the hyperfine splittin
ero (AIS 5 0) then the sum overmI is absent.
We now turn to a number of numerical calculations wh

FIG. 1. ProtonT1 NMRD profiles for three different static ZFS intera
ionsDs

ZFS. In (A) Ds
ZFS 5 0.01 cm21, in (B) Ds

ZFS 5 0.025 cm21, and in (C)Ds
ZFS

0.1 cm21. Other parameters areD t
ZFS 5 0.025 cm21, tc 5 10.0 ps,q 5 2,

IS 5 2.8 Å, tM 5 10 ns,tR 5 100 ns, and the hyperfine coupling constantAIS

0.0074817 cm21. The corresponding MSBM NMRD profile is also show
e
-
e

im to illustrate the magnitude of the correction term fo
ouple of cases.

.1. Mn Proteins

In the literature there are numerous articles using the MS
heory in order to characterize binding sites of hydrated
ition metal ions withq , 6 binding to biomolecules (3, 16–
0). In these cases a coordination of lower symmetry is
ected, which is however only considered by the hydra
umberq (q , 6). In our new theory, as well as in Ref. (8),
reinterpretation of the NMRD profiles also gives informa
bout coordination symmetry in terms of a static ZFS inte

ion.
In Fig. 1 threeT1 NMRD profiles are displayed for theore

cal Mn21 cases and compared with the MSB profile. T
yperfine interaction strength constant was set toASI 5
.0074817 cm21, and the static ZFS interaction is varied fr
.01 (A) and 0.025 (B) to 0.1 (C) cm21. In Fig. 2 the sam
arameters are used except for the hyperfine interaction w
e have omitted. Compared to the SBM NMRD profile (do

ine) the effect of the static ZFS interaction is to lower
elaxation enhancement at low fields. The other model pa
ters areD t

ZFS 5 0.025 cm21, tc 5 10.0 ps,q 5 2, andr IS 5
.8 Å.
In Fig. 3 we display the effect of anisotropic motio

nstead of one correlation timetc 5 10 ps, we uset' 5 10 ps
nd a faster motionp\ 5 3 ps. In (A)Ds

ZFS 5 0, in (B) Ds
ZFS 5

.025 cm21, and in (C)Ds
ZFS 5 0.1 cm21. The effect of aniso

ropic dynamics may be clearly seen in the “dip” region
armor frequencies of 1–10 MHz. All other parameters h

he same values as in Fig. 2.
In Fig. 4 the relative correction termD sum/(T1

MSBM)21 is
isplayed for the cases displayed in Fig. 2. It is clearly sh

hat the correction termDsum grows in importance as the prot

FIG. 2. The same cases as in Fig. 1 are shown, but without hype
oupling,AIS 5 0.
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337GENERALIZED MSBM THEORY OF LOW-SYMMETRY COMPLEXES
armor frequency gets smaller starting from'3 MHz. It first
rows to about110–13% and then at lower frequencies
resence of a static ZFS interaction makes the correction
s large as'240% depending on the magnitude of the st
FS interactionDs

ZFS. There is also a correction due to
onextreme narrowing condition or nonexponential elec
pin relaxation at about 30–100 MHz, with a maximum va
f about 9%. With hyperfine interaction present the correc

erm at low field is even larger. It should be noted that
orrection term presented is calculated as a correction toT1M.
or fast chemical exchange,tM is very small, and the sam
elative corrections will also apply toT1p (the measured rela
vity).

In Fig. 5 the NMRD profile Fig. 2B is displayed togeth
ith that obtained using the high-field version of Eq. [9]

FIG. 3. The effect of an anisotropic motion on the NMRD profile
hown. Here,t' 5 10 ps andpi 5 3 ps. In (A)Ds

ZFS 5 0, in (B) Ds
ZFS 5 0.025

m21, and in (C)Ds
ZFS 5 0.1 cm21. All other parameters are as in Fig. 2.

FIG. 4. The relative correction termsD sum/(T1
MSBM)21 are shown for th

ases displayed in Fig. 2.
rm
c

n
e
n
e

1

T1M
hf 5

4

3 S m0

4pD
2

\ 2g I
2g S

2
S~S1 1!

r IS
6 Re$0.3 3 M 00

21%. [20]

ere the spectral densities containing electron spin–spin r
tion processes have been excluded because of non ex
arrowing conditions. This NMRD profile shows no effects

ow-symmetry coordination since only the electron spin–la
elaxation process is active.

ProtonT1 NMRD profiles are more informative than hig
eld measurements since they are very sensitive to the
nce of a static ZFS interaction and consequently to
ymmetry coordination. This information is not present in
igh-field region (v I . 10 MHz) where low-symmetry coo
ination influences mainly the coordination numberq. The
orrection term, however, becomes extremely important
ctually dominates the relaxivity at lower fields.
When 1H NMRD profiles are interpreted using the SB

heory, the coordination numberq is difficult to extract in
ccordance with high-field data. This difficulty also influen

he extracted distancer IS between the water proton and
aramagnetic electron spins since it comes as a scaling
agnitude of the relaxivity,q/r IS. This type of difficulty has
een discussed in the controversial interpretation of high-
ata and water proton NMRD data of Mn(II)-carboxy pe
ase A and concanavalin A (16, 18–20). Either one relie
olely on high-field data as in Navon (18) or one tries to us
igh-field SBM theory analyzing the entire NMRD profile as
oenig and Brown (20). Koenig and Brown write “. . .we can

eadily argue that the resulting fits to the proton data are
oo bad, and can ascribe deviations to the intrinsic comp
ies of the theory, realizing that zero-field splittings have
een properly considered” (p. 433 in Ref. (20)). So, here w
ill briefly discuss the latter approach, however, in the con

FIG. 5. The protonT1 NMRD profile of Fig. 2B (Ds
ZFS 5 0.025 cm21) is

alculated using the high-field version of the theory; i.e., only the ele
pin–lattice spectral densitys0 is considered (Eq. [20]).
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338 STRANDBERG AND WESTLUND
f a generalized SBM theory. We then think that the Z
nteraction is now properly considered to about 1 MHz pro
requency.

In Fig. 6D we display the best fit and the experime
alues (diamonds) of Koenig and Brown (20) of paramagneti
elaxivities of solvent protons in solutions of Mn21–Con A. In
rying to fit the high-field SMB theory to the entire NMR
rofile, the electron spin relaxation rates seem to be ove
ated. This means thattc 5 59 ps is too long keepingtS0

onstant. If we shortentc as is displayed in Figs. 6A–6C
bout 10 ps the theoretical NMRD profile is improved at pro

requenciesv I , 10 MHz. At high fields the NMRD profil
onforms very well with the experimental values but at
elds the fit is very bad. However, one should remember
art of this low-field region is outside the validity range of
igh-field SMB theory. Mn21–Con A is expected to be

ow-symmetric complex since one expect a coordination n
er of q 5 2.
In Fig. 7 we also compare the experimental NMRD pro

f Koenig and Brown (20) with three theoretical NMRD pro
les where the correlation timetc of the transient ZFS inte
ction and the exchange timetM have been changed from t
est fit values of Ref. (20). We usetc 5 30 ps which is
onsiderably shorter than their best fit value oftc 5 59 ps. This
heoretical NMRD profile also conforms quite well to
xperimental data at high fields, indicating correlation ti
ore like a perturbed hydration shell. Figures 7A–7C dis

he effect of a static ZFS interaction, lowering the relaxivit
requencies below 5 MHz. The effect of a static ZFS inte
ion clearly removes the large discrepancy at low fields. Fi
C is an NMRD curve with a static ZFSDS

ZFS 5 0.1 cm21 and

FIG. 6. The paramagnetic contribution of bound Mn21 to the solven
rotonT1 NMRD profiles in a solution of Mn21–Con A. The diamonds are t
xperimental values found in Ref. (20). The theoretical NMRD profiles a
btained using the best fit parameters of Ref. (20) varying onlytc andtM. The

ollowing parameters are used: (A)tc 5 10 ps andtM 5 170 ns, (B)tc 5 20
s andtM 5 190 ns, (C)tc 5 40 ps andtM 5 190 ns, and (D)tc 5 59 ps and

M 5 205 ns. All parameters are listed in Table 2.
n

l

ti-

n

at

-

s
y
t
-

re

isplays a good fit in the whole region of high fields [1,`]
Hz. With these NMRD profiles we want to indicate t

tting philosophy starting with the generalized SBM the
ith DS

ZFS 5 0.0 and consider only high-field data, and then
he static ZFS interaction to the model when data below'5
Hz are considered. An ESR lineshape analysis when pos
ould be helpful in finding reasonable values fortc andtS0.
The parameters of Koenig (20) and our NMRD profiles ar

ummarized in Table 2. A problem similar to the one
iscussed here may also be encountered in interpreting
roton T1 NMRD profiles of Mn(II)–aqua complexes at lo

emperature and in high-viscosity solutions.

.2. Angular Dependence

In ordinary MSMB theory, the paramagnetic ion is assu
o be in an isotropic liquid, so that all angular dependenc
veraged out by fast isotropic motions. In this general

heory, the anglebLM between the laboratory reference fra
nd the molecular reference frame appears in the expressi

he spectral densities, Eq. [36], through the reduced Wi
otation matrix elementsdkn

2 (b LM) (12). As can be seen fro
q. [9], the electronT1 contribution to the relaxivity include
nly ad01

2 (b LM) element, which is equal to zero whenbLM 5 0°
r 90°. This means that theT1 part of the relaxivity can b
liminatedin a macroscopically oriented sample by chang

he angle to one of these values. TheT2 part cannot b
liminated in this way, since it includes bothd00

2 (b LM) and
02
2 (b LM) elements, and there is no angle that will simu
eously make these two elements zero.
This effect is shown in Fig. 8.Ds

ZFS 5 0.025 cm21, D t
ZFS 5

.025 cm21, tc 5 10.0 ps,q 5 1, andr IS 5 2.8 Å in all cases

FIG. 7. The effect of static ZFS interaction for the paramagnetic co
ution of bound Mn21 to the solvent protonT1 NMRD profiles in a solution o
n21–Con A. The parameters are as in Fig. 6 except fortR 5 8 ns,tc 5 30
s, andtM 5 180 ns, and the static ZFS interaction. In (A),Ds

ZFS 5 0, in (B)

s
ZFS 5 0.05 cm21, and in (C)Ds

ZFS 5 0.1 cm21.
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n Fig. 8A, the isotropic case is shown, in (B) the angle is
nd in (C) the angle is 30°

3. SUMMARY

In this work we give a generalized SBM theory forS 5 5
2

hich is valid for low-symmetry coordination of water mo
ules around a paramagnetic metal ion binding to a biom
olecule. It is assumed that the reorientational motion is

low to be important for the relaxation of the electron s
ystem. The electron spin relaxation then becomes ang
endent which has been accounted for in the theory. The th
erived is valid for nonextreme narrowing conditions for
lectron spin system with a static ZFS interaction prese
hould be noted that, like the SBM theory, this is no
ow-field theory. We assume that the Zeeman interaction d
nates over the ZFS and hyperfine interactions. Therefore
hould be careful when the theory is used at low fields (,'1
Hz). For example, with a ZFS strengthD t

ZFS 5 0.05 cm21, the
heory is strictly valid only for field strengthsB0 . 0.02 T, or

TAB
Comparison of SBM Best Fit (20

Figure tR/ns r IS/Å tM/ns tc/ps

A 14 2.8 170 10
B 14 2.8 190 20
C 14 2.8 190 40
D (20) 14 2.8 205 59

A 8 2.8 180 30
B 8 2.8 180 30
C 8 2.8 180 30

FIG. 8. The protonT1 NMRD profile is calculated for macroscopica
riented samples. The isotropic (not oriented) NMRD profile is shown in
he anglebLM is in (B) 90° and in (C) 30°. All other parameters are the s
s those for Fig. 2B.
,

o-
o

e-
ry

It

-
ne

I . '1 MHz. In our figures, we have extended the plots
ow fields, thus slightly outside the validity range of the the

The expressions for the paramagnetically enhanced nu
pin–lattice relaxation rate is derived in a closed analy
orm. However, in order to obtain the enhanced nuclear s
attice relaxation rate for an isotropic solution one must
orm an average overbLM angles. The theory provides an ex
arameterDs

ZFS which may reflect changes in the aver
ymmetry of the first hydration shell of the paramagnetic
pon binding to biomacromolecules. NMRD profiles for m
oscopically oriented samples are also investigated where
hown that electron spin–lattice relaxation enhancement
e removed for a macroscopically well-oriented sample

he director at 0° and 90° relative to the static magnetic fi
A computer program in which the closed analytical exp

ions are implemented to give the first MSBM-like theory
rotonT1 NMRD profiles, which is valid for both nonextrem
arrowing conditions for the electron spin system and
ymmetry coordination, has been developed. The relax
rom the scalar interaction is also included in the comp
rogram.

Computer program. A Fortran computer program dev
ped according to the theory presented in this work is avai
pon request by e-mail to Perolof.Westlund@chem.umu.

APPENDIX A

The Lattice Dynamics

Consider the spectral density of Eq. [5]

ss
DD~iv I, bLM! 5

3

S~S1 1!

3E
0

`

trS$Ŝs
1†eiL̂

ˆ
S~bLM!tŜs

1r̂ S
T%e2~ivI11/tR!tdt

; M ss
21. [21]

irst, we must define the propagator or the Liouville supe

2
d the Generalized SBM Theory

AIS/MHz D t
ZFS/cm21 Ds

ZFS/cm21 q T/K

— 0.0135 — 2 —
— 0.0135 — 2 —
— 0.0135 — 2 —
— 0.0135 — 2 29

— 0.0135 0.000 2 —
— 0.0135 0.025 2 —
— 0.0135 0.100 2 —

.

LE
) an
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rator governing the time dependence of the electron
orrelation function. Lowering the coordination symmetry
ecreasing the ZFS correlation time increase the electron
elaxation and may also lower the PRE effect. Taking this
ccount in formulating the Hamiltonian model, the elec
pin Liouvillian L̂̂S(bLM) is given by

L̂̂S~bLM! 5 L̂̂ 0
Zeeman1 L̂̂ 0

hyperfine

1 L̂̂ 0
ZFS~bLM! 1 iR̂̂ZFS~bLM!. [22]

L̂̂S(bLM) governs the time dependence of the electron
orrelation functions and contains a Zeeman term, a hype
nteraction term, a static secular ZFS term, and a Red
uperoperatorR̂̂ZFS. The latter is generated by the transient
f the ZFS interaction, since we are focusing on slowly t
ling complexes of electron spin systems withS 5 5

2. Let us
ocus on Eq. [22] and first consider the time-indepen
iouville operators.
There are three time-independent interactions: the Ze

nteraction

Ĥ 0
Zeeman5 2gSB0Ŝ0

1 ; vSŜz
1, [23]

he hyperfine interaction with the metal nucleus with s
uantum numberI

Ĥ 0
hyperfine5 AISŜ0

1Î 0
1, [24]

nd finally the static ZFS interaction

Ĥ 0
ZFS 5 O

n

~21! nŜn
2^F2n~t!

2(L)&. [25]

ere,Ŝn
2 is a standard second-rank electron spin operato

F2n(t)
2(L)& is a static ZFS tensor component of the labora

rame. We may write the laboratory tensor component
erms of the ZFS principal components by introducing
ntermediate frame (M) defining the molecular surface w
he hydrated metal ion is “bound”:

^F2n~t!
2(L)& 5 O

k

@F0~t!
2(P)^Dk0~VPM~t!!& 1 F2~t!

2(P)

3 ^Dk2~VPM~t!!& 1 F22~t!
2(P)

3 ^Dk22~VPM~t!!&]D kn
2 ~VLM!. [26]

ow we assume threefold symmetry or more around the
ecular-fixed directorzM and thenk 5 0 which considerabl
implifies the static ZFS Hamiltonian:
in
d
in

o
n

in
ne
ld
t
-

t

an

nd
y
in
n
e

o-

^F2n~t!
2(L)& 5 @F0~t!

2(P)^D00~VPM~t!!& 1 F2~t!
2(P)

3 ^D02~VPM~t!!& 1 F22~t!
2(P)

3 ^D022~VPM~t!!&]D 0n
2 ~VLM!. [27]

hombicity of the ZFS tensor is included in an effective Z
arameterDs

ZFS 5 =2
3D sD 0

PM 1 2ES2
PM. HereSm

PM is an orde
arameter given bySm

PM 5 ^d0m
2 (bPM)& and measures the fle

bility of the complex. The order parameterSm
PM introduces a

artially averaged ZFS which thus measures an averaged
ymmetry coordination of the first hydration shell of the m
on.

The secular approximation means that only the term c
uting with the Zeeman interaction is considered. This
ood approximation since the other nonsecular terms only
ontribute at higher order:

Ĥ 0
ZFS~bLM! 5 D s

ZFSd00
2 ~bLM!Ŝ0

2. [28]

In Eq. [28] the orientational dependence of the molecu
xed frame (M) of a macromolecule or a molecular interfac
iven byd00

2 (b LM) which is a reduced Wigner rotation mat
lement (12). We assume for simplicity that the molecu

rame (M) of the partially averaged ZFS interaction coinc
ith ther IS vector of the dipole–dipole interaction. In practi

t is not possible to distinguishD s, E, andSm
PM in the calcula

ions. The effect of noncoinciding dipole–dipole and st
FS tensor frames also introduces a reduction in the NM
rofiles. This effect has been analyzed by Benetis and K
lewski (21). It is straightforward to include the extra tran

ormation matrix which thus will scale the paramagnetic
nhanced relaxation contribution. But without knowing m
bout the structure of the hydration shell and the binding s

he paramagnetic metal ion we think that such an analysis
ome at a later stage. The orientational dependence o
olecular-fixed frame (M) of a macromolecule or a molec

nterface is given byd00
2 (b LM), which is a reduced Wigne

otation matrix element (12).
The time-dependent ZFS interaction arises because of

uating symmetry of the first coordination shell of the pa
agnetic metal ion, that is, the fluctuating symmetry of
ydration shell with an averaged symmetry lower than oct
ral or tetrahedral symmetry. This lowering of symmetry m
rise because some ligand water molecules are immobiliz
ave been replaced by molecular groups originating fro
olecular interface or from the macromolecule to which
etal ion is bound. The molecular fluctuation of the fi

oordination sphere then generates a transient ZFS with
ean average value. This is modeled by an electron spin
amiltonian,

DĤ 1
ZFS~t, bLM! 5 Ĥ ZFS~t! 2 Ĥ 0

ZFS~bLM!. [29]
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ow, applying ordinary Bloch–Wangsness–Redfield the
15), the transient ZFS interaction generates an angle-de
ent relaxation supermatrixR. The relaxation matrix elemen
re listed in Table 3. In order to determine the paramag
ally enhanced nuclear spin relaxation in micro-heterogen
ystems, the angle-dependent spectral densitiesks(v I, bLM),
nvolving both types of electron spin relaxation processes (
5]–[7]), have to be determined. However, a theoretical s
lification may be introduced since it is the spectral dens
nd not the time autocorrelation functions which are the cr
bjects to be determined. Therefore, by formally solving
ourier–Laplace transforms it is possible to derive closed
lytical expressions. This procedure is analogous to der
MR/ESR lineshape functions for high-spin systems. We

eadily obtain closed analytical expressions for the spe
ensities for arbitrary nuclear spin quantum numb
13, 14, 22).

The nuclear spin spectral densities of Eq. [5] and Eq
ay then be determined using the approach of R

13, 14, 22). The expression for each of the spectral dens
s 5 61, 0) is given by one element of the inverse of
atrix M (bLM). The spectral density may be written (13, 14)

ss
DD~v I, bLM! ;

3

S~S1 1! E
0

`

trL$Ŝs
1†eiL̂

ˆ
S~bLM!tŜs

1r̂ S
eq%

3 e2ivItdt

5 E
0

`

trL$Ôs
1†e2M̂

ˆ
~vI,bLM!tÔs

1%dt

5 trS$Ôs
1†M̂̂~v I, bLM! 21Ôs

1%, [30]

here trS{ Ôs
1†M̂̂(v I, b LM)21Ôs

1} denotes a matrix element

TABLE 3
Matrix Elements of M2(bLM, mI) for S 5 5

2

A 5 i (v I 6 vS(mI)) 1 R11
22(b LM, mI)

B 5 i (v I 6 vS(mI)) 1 R11
44(b LM, mI)

C 5 i (v I 6 vS(mI)) 1 R11
11(b LM, mI)

D 5 i (v I 6 vS(mI)) 1 R11
33(b LM, mI)

E 5 i (v I 6 vS(mI)) 1 R11
55(b LM, mI)

F 5 R11
24(b LM, mI)

G 5 i4=2
5D sSPMd00

2 (b LM)

H 5 i6= 6
35D sSPMd00

2 (b LM)

I 5 i=100
21 D sSPMd00

2 (b LM)

J 5 i2=2
3D sSPMd00

2 (b LM)

K 5 R11
13(b LM, mI)

L 5 R11
35(b LM, mI)
y
n-

ti-
us

s.
-
s
al
e
n-
g
n
al
s

]
s.
s

he inverse ofM which is determined by the superopera
ˆ̂ (v I, b LM)

M̂̂~v I, bLM! 5 2i L̂̂ S~bLM! 1 iv I1̂̂. [31]

here 1̂̂is the unity superoperator.
Here we have omitted thetR term, as the biomacromo

cule–paramagnetic ion complex is assumed to reorient
lowly.
The electron spin operator representation chosen forM̂̂(v I,

LM) is an irreducible spherical electron spin tensor ope
asis setÔs

S

Ôs
S 5 O

m

Î2S 1 1S S S S
m 1 s 2 m 2 s D

3 ~21! S2m2suSm1 s&^Smu [32]

xpressed in terms of Zeeman eigenoperatorsuSm1 s&^Smu
nd where

S S S S
m 1 s 2 m 2 s D [33]

s a 3j symbol (12).
For an electron spin quantum numberS 5 5

2 in micro-
eterogeneous systems all the statistical tensors of rankS 5 0,
, 2, 3, 4, 5 enter the theoretical description. The matrixM is

hen set up by adding the Redfield electron spin relaxa
atrix in the irreducible spherical tensor spin operator re

entation to the static Liouville supermatrix which includes
lectron Zeeman interaction, the hyperfine interaction, an
tatic ZFS interaction.
As mentioned above the theoretical approach means c

ng out the Fourier–Laplace transform explicitly and thus s
ng the integral exactly, giving the result of the spectral den
n terms of only one matrix element ofM 21 for each block
haracterized by a hyperfine split ESR line. This is an app
mation originating from taking only the scalar hyperfine c
ling into account (cf. Eq. [24]).

APPENDIX B

The Electron Spin–Spin Spectral Density

In the spherical tensor representation of Eq. [32] of elec
pin quantum numberS 5 5

2 the spin–spin relaxation corr
ponds tos 5 61. The M matrix is then denoted with a

ndex,M 2, indicating its dependence on electron spinT2 pro-
esses (s 5 61). TheM 2 matrix has the form
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M 2 ; M 2~v I, bLM, mI! 5 3
A F G H 0
F B 0 I J
G 0 C K 0
H I K D L
0 J 0 L E

4 , [34]

here the matrix elements are given in Table 3. It shoul
oted that the matrix elements both in Eq. [34] and in Eq.
ll depend onbLM. Elements on and next to the diagonal a
epend onvS andmI, and finally the diagonal elements depe
nv I. To simplify the notation this dependence it not explic
hown. In Eqs. [34] and [49], the matrix elements are ord
ith even-rank elements first, with ranks in the order 2, 4,
. The rank 1 elementC 5 (M 2)33 corresponds to the sp
ector and is the relevant element for spin relaxation. Wha
ow need to calculate is the 33 element of the inverse m
The electron spin energies are given by the Zeeman

ction and the hyperfine splitting as

ivS~mI! 5 iv S
0 1 imI 3 AIS, [35]

hus ignoring higher order terms. The Redfield relaxation
rix elements of Table 3 are written in the representation o
32] asRss

S9S 5 trS{ Ôs
S9†R̂̂(b LM, mI)Ôs

S}. The elements can b
alculated using Eq. [3] in Ref. (22) and are listed in Table
We have now reached the theoretical level where ele

pin relaxation is expressed in terms of microscopic param
escribing the transient ZFS correlation function. Here als

ntrinsic angle dependence becomes evident since the ele
pectral densities have this angle dependence. The mode
ron spin spectral densities are given by

Jn~bLM, nvS~mI!! ;
32~D t

ZFS! 2

25 O
k

udkn
2 ~bLM!u 2

3
tk

1 1 ~nvS~mI!tk!
2 [36]

TABLE 4
Redfield Matrix Elements for S 5 5

2

R11
22(b LM, mI) 5 5

56(33J0 1 38J1 1 76J2 1 38iQ 1 2 5iQ 2)

R11
44(b LM, mI) 5 5

112(39J0 1 218J1 1 233J2 1 22iQ 1 1 17iQ 2)

R11
11(b LM, mI) 5 1

2(3J0 1 5J1 1 2J2 1 iQ 1 1 2iQ 2)

R11
33(b LM, mI) 5 1

48(123J0 1 370J1 1 497J2 1 126iQ 1 2 3iQ 2)

R11
55(b LM, mI) 5 5

24(3J0 1 26J1 1 16J2 2 6iQ 1 1 9iQ 2)

R11
24(b LM, mI) 5 45

112
=10(J0 1 2J1 2 3J2 1 2iQ 1 2 iQ 2)

R11
13(a LM, mI) 5 9

28
=21(J0 2 J2 1 2iQ 1 2 iQ 2)

R11
35(a LM, mI) 5 25

336
=14(3J0 1 14J1 2 17J2 1 6iQ 1 2 3iQ 2)
e
]

d
,

e
ix.
r-

-
q.

n
rs
e

ron
lec-

ith the dynamic frequency shiftQn defined by

Qn~bLM, nvS~mI!! ; 2
32~D t

ZFS! 2

25 O
k

udkn
2 ~bLM!u 2

3
t k

2nvS~mI!

1 1 ~nvS~mI!tk!
2 . [37]

e thus allow for anisotropic diffusion dynamics of the trans
FS. Physically this anisotropy may be thought of as an effe

iberation and the spinning motion of the water ligands an
lower distortion motion are due to intercomplex M–O dista
uctuations. This model has been denoted the pseudo-ro
odel (11, 23). The correlation timestk are defined as

1

t0
5

1

t'

1

t61
5

5

6t'

1
1

6t \

1

t62
5

1

3t'

1
2

3t \

, [38]

here the “fast” motion (t\) is expected to be in the range
–5 ps for hexa aqua complexes and the “perpendicular”

ion (t') is much slower because it is more influenced by
olecular interface and may range from an isotropic (1–5

ase to very anisotropic dynamics, i.e., 5–300 ps.
The electron spectral densities are determined from a

ersion of the corresponding matrix. For the electron spin–
elaxation withs 5 61 we obtain

s1
DD~v I, bLM, mI! 5 trS$Ô1

1†M̂̂ 2
21~v I, bLM, mI!Ô1

1%, [39]

here the exact solution of the spectral density of Eq. [3

trS$Ô1
1†M̂̂ 2

21~v I, bLM, mI!Ô1
1% 5

X 2 2FJHL

CX 2 G2Z 1 Y

5
1

C S1 1
G2Z 2 Y 2 2FJHL

CX 2 G2Z 1 Y D
5

1

C
~1 1 d1~v I, bLM, mI!!, [40]

here we have introduced

X 5 AZ 1 H 2~ J2 2 BE! 1 2EFHI 1 F 2~L 2 2 DE! [41]

Y 5 2GK~BEH 2 EFI 2 HJ2!

1 K 2~EF2 2 ABE1 AJ2! 2 2FJL~CH 2 GK! [42]

Z 5 BDE 2 EI 2 2 DJ2 2 BL2 1 2IJL. [43]
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ote that these terms all depend onv I, bLM, andmI. We also
efine a correction term

d1~v I, bLM, mI! 5
G2Z 2 Y 2 2FJHL

CX 2 G2Z 1 Y
, [44]

here we explicitly write the dependence ofd1 on v I, bLM, and
I to stress this fact.
We obtain the spectral density independent of hype

plitting by a summation over hyperfine-dependent elec
esonances

s1
DD~v I, bLM! 5 O

mI

trS$Ô1
1†M̂̂ 21~v I, bLM, mI!Ô1

1%. [45]

In the case of extreme narrowing (F 5 K 5 L 5 0) one
ay think that the SBM result (1/C) is recovered. Howeve

his is not the case, since the static ZFS mixes even
lectron spin tensor operators, and the following correc

erm is still present,

s1
DD~v I, bLM!

5 O
mI

1

CS1 1
G2U

ACU 2 G2U 1 @ J2 2 BE#CH2D , [46]

here we have defined

U 5 BDE 2 EI 2 2 DJ2. [47]

n deriving Eqs. [40] and [46] we obtain the first two of o
ain results, clearly displaying the correction terms to
SBM theory.

APPENDIX C

The Electron Spin–Lattice Spectral Density

The spectral density which is dominated by electron s
attice relaxation is given by

s0
DD~v I, bLM, mI! 5

3

S~S1 1!

3E
0

`

trL$Ŝ0
1†eiL̂

ˆ
S~bLM,mI!tŜ0

1r̂ S
eq%e2vItdt

5 trS$Ô0
1†M̂̂ 21~v I, bLM, mI!Ô0

1%. [48]

n this case only a 33 3 matrix has to be inverted since t
e
n

nk
n

e

–

ven-rank tensor operators are decoupled from the odd
ensor operators. TheM 1 (s 5 0) matrix is block diagonal:

M 1 ; M 1~v I, bLM, mI!

5 3
2R00

22 2 iv I R00
24 0 0 0

R00
24 2R00

44 2 iv I 0 0 0
0 0 A9 B9 0
0 0 B9 C9 D9
0 0 0 D9 E9

4 . [49]

The matrix elements ofM 1 are expressed in terms of Re
eld matrix elements and the nuclear spin Larmor freque
nd are listed in Table 5, together with the Redfield ma
lements.
The inverted matrix element (M 1

21)33 is given by

trS$Ô0
1†M̂̂ 1

21~v I, bLM, mI!Ô0
1%

5
1

A9
~1 1 d0~v I, bLM, mI!!, [50]

here a correction termd0(v I, bLM, mI) which is due to
onextreme narrowing has been introduced. It is thus equ
ero in the extreme narrowing regime,

d0~v I, bLM, mI! 5
B9 2

C9A9 2 B9 2 2 D9 2~ A9/E9!
. [51]

his is our third main result of this paper and now we have
pectral densities of the PRE theory in closed form.

TABLE 5
Matrix Elements of M1 for S 5 5

2 and Redfield
Matrix Elements Rss

S*S

R00
22(b LM, mI) 5 15

56(22J1 1 27J2)

R00
44(b LM, mI) 5 25

56(26J1 1 23J2)

R00
24(b LM, mI) 5 25

28
=3(J1 2 J2)

A9 5 R00
11(b LM, mI) 1 iv I

C9 5 R00
33(b LM, mI) 1 iv I

E9 5 R00
55(b LM, mI) 1 iv I

B9 5 R00
13(b LM, mI)

D9 5 R00
53(a LM, mI)

R00
11(b LM, mI) 5 J1 1 4J2

R00
33(b LM, mI) 5 1

8(82J1 1 83J2)

R00
55(b LM, mI) 5 25

8 (2J1 1 J2)

R00
13(b LM, mI) 5 9

14
=14(J1 2 J2)

R00
53(b LM, mI) 5 25

28
=35(J1 2 J2)
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